
Products > RF ICs/Discretes > RF ICs > Silicon Amplifiers, Gain Blocks > MSA-0736

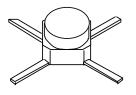
MSA-0736

6V Fixed Gain, General Purpose Amplifier

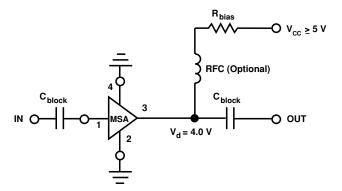
MSA-0736 Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-0736 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using Avago's 10 GHz $f_T, 25~{\rm GHz}~f_{\rm MAX}, {\rm silicon}~{\rm bipolar}~{\rm MMIC}~{\rm process}~{\rm which}~{\rm uses}$ nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Cascadable 50 Ω Gain Block
- Low Operating Voltage: 4.0 V Typical V_d
- 3 dB Bandwidth: DC to 2.4 GHz
- 13.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

Parameter	Absolute Maximum ^[1]	
Device Current	60 mA	
Power Dissipation ^[2,3]	275 mW	
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature	-65 to 150°C	

Notes:

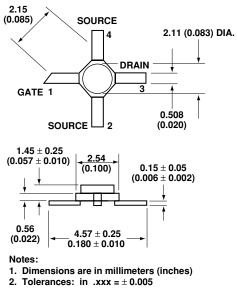
- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. T_{CASE} = 25° C.
- 3. Derate at 6.5 mW/°C for $T_{\rm C} > 157^{\circ}{\rm C}.$
- 4. Storage above $+150^{\circ}$ C may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I _d = 22 mA, Z ₀ = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB	12.5	13.5	14.5
ΔG_P	Gain Flatness	f = 0.1 to 1.3 GHz	dB		± 0.6	±1.0
f3 dB	3 dB Bandwidth		GHz		2.4	
VCWD	Input VSWR	f = 0.1 to 2.5 GHz			2.0:1	
VSWR	Output VSWR	f = 0.1 to 2.5 GHz			1.8:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		4.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		5.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		19.0	
tD	Group Delay	f = 1.0 GHz	psec		140	
Vd	Device Voltage		V	3.6	4.0	4.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-7.0	

Note:

1. The recommended operating current range for this device is 15 to 40 mA. Typical performance as a function of current is on the following page.


Ordering Information

Part Numbers	No. of Devices	Comments
MSA-0736-BLKG	100	Bulk
MSA-0736-TR1G	1000	7" Reel

Thermal Resistance^[2,5]:

 $\theta_{\rm jc} = 155^{\circ}{\rm C/W}$

36 micro-X Package Dimensions

mm .xx = ± 0.13

